‘Red Hat’ แนะกลยุทธ์ความสำเร็จ ใช้พลัง 'Gen AI’ ปฏิรูปธุรกิจ

‘Red Hat’ แนะกลยุทธ์ความสำเร็จ ใช้พลัง 'Gen AI’ ปฏิรูปธุรกิจ

เจาะลึกถึงวิธีการลงทุน Generative AI อย่างมีประสิทธิภาพ เพื่อประโยชน์ที่สำคัญที่สุดซึ่งไม่ใช่แค่เรื่องการนำนวัตกรรมมาใช้ในธุรกิจ แต่ยังเน้นด้านประสิทธิภาพ ประสิทธิผล และการทำให้งานที่ต้องทำซ้ำๆ กลายเป็นอัตโนมัติ

KEY

POINTS

  • แนวทางการใช้ AI แบบเดียวไม่มีทางที่จะตอบความต้องการให้กับองค์กรทุกแห่งได้
  • ศักยภาพของ AI จะเปลี่ยนจากการใช้งานทั่วไป ไปเป็นเครื่องมือเชิงกลยุทธ์ทางธุรกิจ
  • ต้องพิจารณา 3 ประเด็น คือ การใช้ประโยชน์ การนำไปปรับใช้ และการปรับแต่ง Gen AI

หากย้อนกลับไปนึกถึงเทรนด์เทคโนโลยีที่เกิดขึ้นในอดีตจะเห็นได้ว่าเมื่อมีเทคโนโลยีใหม่ๆ เกิดขึ้น รูปแบบการใช้งานจริงมักไม่ตายตัว

หากมองไปในอนาคต การใช้งานปัญญาประดิษฐ์ (AI) ภายในองค์กรกับแอปพลิเคชันและสภาพแวดล้อมทางธุรกิจก็มีความหลากหลายไม่ต่างกับเทรนด์ที่เกิดขึ้นในอดีตเช่นกัน

ซีดริค ไคลเบิร์น ผู้สนับสนุนนักพัฒนาอาวุโสเร้ดแฮท (Red Hat) เปิดมุมมองว่า ความยืดหยุ่นมีความสำคัญมาก เพราะแนวทางการใช้ AI แบบเดียวไม่มีทางที่จะตอบความต้องการให้กับองค์กรทุกแห่งได้

ขณะเดียวกัน ผู้ให้บริการด้านแพลตฟอร์ม AI รายใดรายหนึ่งก็ไม่สามารถเติมเต็มความต้องการทุกอย่างได้เช่นเดียวกัน แต่การผสานระหว่างโมเดลที่สร้างไว้ล่วงหน้า เข้ากับโซลูชันที่ปรับแต่งเอง (custom-tuned solutions) และผสานกับข้อมูลภายในองค์กรอย่างปลอดภัย จะเป็นเครื่องมือผลักดันการใช้ AI ให้รุดหน้า

โดยเฟรมเวิร์กต่างๆ รวมถึงซอฟต์แวร์และโครงสร้างพื้นฐานที่เป็นระบบเปิด จะช่วยให้องค์กรทุกขนาดสามารถเข้าถึงและปรับแต่งโมเดล generative AI (gen AI) ต่าง ๆ และนำไปปรับใช้ให้ตรงตามความต้องการเฉพาะขององค์กรได้

วางกลยุทธ์ สร้างจุดเปลี่ยน

เพื่อให้เข้าใจว่าจะนำ AI มาใช้กับแอปพลิเคชันภายในและภายนอกได้อย่างไร ลองมาเจาะลึกถึงวิธีการลงทุนทาง เทคโนโลยีขององค์กรต่างๆ กันก่อน

ข้อมูลจาก Deloitte's State of Generative AI in the Enterprise in 2024 ระบุว่า ประโยชน์ที่สำคัญที่สุดของการลงทุนด้าน gen AI ไม่ใช่แค่เรื่องการนำนวัตกรรมเข้ามาใช้ในธุรกิจเท่านั้น แต่ยังเน้นด้านประสิทธิภาพ ประสิทธิผล และการทำให้งานที่ต้องทำซ้ำๆ กลายเป็นทำได้โดยอัตโนมัติ

จริงอยู่ที่โมเดลเหล่านี้สามารถสร้างคอนเทนต์ใหม่ได้ แต่ประโยชน์จริงๆ ของโมเดลภาษาขนาดใหญ่ (LLMs) คือความสามารถในการประมวลผลข้อมูลปริมาณมหาศาลและสามารถเข้าใจรูปแบบของข้อมูลนั้นๆ และเมื่อนำไปใช้กับซอฟต์แวร์หรือแอปพลิเคชันทั่วไป จะทำให้แอปพลิเคชันเหล่านั้นเป็นแอปพลิเคชันอัจฉริยะที่ช่วยเสริมการทำงาน และกระบวนการทำงาน (เวิร์กโฟลว์) ของพนักงานภายในองค์กรได้

อย่างไรก็ตาม การนำ AI มาใช้อาจแตกต่างกันในแต่ละองค์กร โดยทั่วไปองค์กรจะเริ่มจากการทำให้งานพื้นฐานง่ายๆ เป็นอัตโนมัติก่อน จากนั้นจึงขยายสู่การทำให้กระบวนการทำงานทางธุรกิจเป็นอัตโนมัติ และบูรณาการ AI ไว้ในขั้นตอนการทำงานทางธุรกิจต่างๆ อย่างสมบูรณ์

การนำไปใช้แบบค่อยเป็นค่อยไปมักเริ่มด้วยการนำร่องกับงานที่ไม่ส่งผลกระทบต่อการทำธุรกิจมากนัก และใช้ประโยชน์จากเครื่องมือสำเร็จรูปที่พร้อมใช้ทันที (out-of-the-box tools) เช่น เครื่องมือช่วยเขียนโค้ดอัตโนมัติ ซึ่งช่วยประหยัดเวลาจากการที่ต้องทำซ้ำๆ

เมื่อความมั่นใจในคุณประโยชน์ของ AI เพิ่มขึ้น นักพัฒนาซอฟต์แวร์ และธุรกิจต่างๆ จึงเริ่มฝัง AI ไว้ในกระบวนการและแอปพลิเคชันทางธุรกิจเฉพาะด้าน ส่วนขั้นตอนสุดท้ายคือการปรับแต่ง-การพัฒนาโมเดล AI ที่เป็นกรรมสิทธิ์ ซึ่งได้รับการใส่ข้อมูลเฉพาะขององค์กรเพื่อให้ AI สามารถขับเคลื่อนให้เกิดข้อมูลเชิงลึกและการตัดสินใจได้อย่างเจาะจง

อย่างไรก็ดี ในแต่ละขั้นตอนที่กล่าวมานำมาซึ่งประโยชน์และความซับซ้อนในตัวเอง เนื่องจากธุรกิจต่าง ๆ กำลังใช้ AI ในรูปแบบที่ซับซ้อนมากขึ้น ต่อไปนี้เป็นข้อมูลเชิงลึกของขั้นตอนเหล่านี้ที่จะเผยให้เห็นว่า AI จะค่อยๆ กลายเป็นองค์ประกอบสำคัญที่สามารถนำไปใช้ในการดำเนินงานด้านต่าง ๆ ได้อย่างไร

ใช้ประโยชน์ ผสานรวมธุรกิจ

สำหรับ การใช้ประโยชน์จาก AI  เพื่อเพิ่มประสิทธิภาพงานต่างๆ ด้วยความช่วยเหลือจาก AI ไม่กี่ปีที่ผ่านมา หลายคน โดยเฉพาะนักพัฒนาซอฟต์แวร์และวิศวกรได้ใช้ GenAI เพื่อทำให้การทำงานประจำเป็นอัตโนมัติและมีประสิทธิภาพมากขึ้น ผู้ช่วยเขียนโค้ด (code assistants) เป็นกรณีใช้งานปกติสำหรับ LLMs ซึ่งช่วยปรับปรุงงานด้านการเขียนโปรแกรมด้วยภาษาต่างๆ ที่ต้องทำซ้ำๆ

เช่น มีการผสานรวม AI ไว้ในเครื่องมือเพื่อให้สามารถพัฒนาซอฟต์แวร์ได้เร็วขึ้น หรือการแก้ไขจุดบกพร่องให้กับสภาพแวดล้อมไอทีที่ใช้ในการปฏิบ้ติงาน ซึ่งในทางปฏิบัติจะช่วยให้นักพัฒนาสามารถใช้เวลากับการทำงานที่สำคัญ ลดกระบวนการทำงานที่ต้องทำซ้ำๆ ลงได้

โมเดลที่ pre-built เหล่านี้มีข้อดีคือใช้งานง่าย ปรับแต่งเพียงเล็กน้อยก็ใช้งานได้ และสามารถทำงานได้โดยไม่ต้องเปลี่ยนโครงสร้างพื้นฐานหลัก จึงช่วยให้ทีมไอทีที่ยังใหม่ต่อการใช้ AI มีทางเลือกที่เข้าถึงได้ ด้วยเหตุนี้ แนวทางปกติของการนำ AI ไปใช้ จึงเกี่ยวข้องกับการใช้ประโยชน์เพื่อเพิ่มประสิทธิภาพในการทำงาน

ส่วนของ การนำ AI มาปรับใช้ และ ผสานรวม AI เข้ากับกระบวนการทางธุรกิจ เมื่อบริษัทคุ้นเคยกับเครื่องมือเหล่านี้แล้ว ก็มักจะนำโมเดล AI ต่าง ๆ ไปใช้ในการดำเนินการทางธุรกิจ ในขั้นตอนนี้ AI จะถูกฝังไว้ในแอปพลิเคชัน เพื่อเพิ่มประสิทธิภาพการโต้ตอบให้กับผู้ใช้งาน หรือสนับสนุนงานต่างๆ ที่สามารถปรับขนาดได้

ในท้ายที่สุด การใช้ AI กับแอปพลิเคชันสมัยใหม่ จะช่วยให้แอปพลิเคชันมีบริบทที่ลึกมากขึ้นเกี่ยวกับสิ่งที่ผู้ใช้ต้องการ และไม่ว่าบริบทนี้จะเป็นความเข้าใจทั่วไปหรือเฉพาะเจาะจงสำหรับองค์กรใดองค์กรหนึ่ง AI ก็รู้ว่าอะไรคือสิ่งจำเป็นและรู้ขั้นตอนต่างๆ ที่จะนำพาสู่เป้าหมายโดยไม่ต้องได้รับการเทรนอย่างละเอียดจากทีมไอที

การขจัดความขัดแย้งระหว่างมนุษย์และระบบเป็นสิ่งที่ทำให้ทุกคนหันไปหาแอปพลิเคชันที่ใช้เทคโนโลยี AI ที่สามารถเข้าใจผู้คนและลด “งานหนัก” ของกระบวนการทำงานต่างๆ

‘3 ประเด็น’ ต้องพิจารณา

การปรับแต่ง AI: การบูรณาการข้อมูลที่เป็นกรรมสิทธิ์เพื่อจัดระเบียบการใช้ AI ขั้นตอนต่อไปสำหรับผู้ที่พร้อมเป็นเจ้าของโมเดล AI ของตนเองอย่างเต็มรูปแบบ คือการปรับแต่งโมเดลเหล่านั้นด้วยข้อมูลที่เป็นกรรมสิทธิ์ ซึ่งเรียกกันว่าการจัดระเบียบโมเดล (model alignmnet)

กระบวนการนี้คือจุดที่ศักยภาพของ AI จะเปลี่ยนจากการใช้งานทั่วไป ไปเป็นเครื่องมือเชิงกลยุทธ์ทางธุรกิจ รวมถึงการจัดระเบียบโมเดลให้สอดคล้องกับบริบทการดำเนินงานของบริษัทให้มากที่สุด

อย่างไรก็ตาม การเทรนและการปรับแต่งโมเดลอย่างละเอียดด้วยข้อมูลภายในของบริษัทย่อมทำให้เกิดความท้าทายทางเทคนิค เช่น การจัดการชั้นความลับของข้อมูล การจัดสรรทรัพยากร และการอัปเดทโมเดลที่กำลังใช้อยู่

พึงระลึกไว้ว่า ไม่มีแนวทางมาตรฐานใดที่องค์กรต่างๆ จะนำไปใช้เพื่อการนำ AI มาใช้ในองค์กร การที่จะสามารถนำ AI ไปใช้งานได้มากขึ้นนั้นต้องพิจารณา 3 ประเด็นสำคัญ คือ การใช้ประโยชน์ การนำไปปรับใช้ และการปรับแต่ง gen AI